Venetoclax, bortezomib and S63845, an MCL1 inhibitor, in multiple myeloma

Author:

Wong Kwan Yeung1ORCID,Chim Chor Sang1ORCID

Affiliation:

1. Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong

Abstract

Abstract Objectives Venetoclax, an orally available BCL2-selective inhibitor, has demonstrated promising single-agent anti-tumour activity in myeloma especially patients with t(11;14). Herein, whether venetoclax sensitivity could be enhanced or restored in combination with bortezomib or S63845, a novel MCL1-selective inhibitor, was examined in human myeloma cell lines (HMCLs), including bortezomib-resistant HMCLs. Methods By MTS assay, half-maximal inhibitory concentration (IC50) and hence sensitivity/resistance to venetoclax, bortezomib and S63845 were determined. Key findings Venetoclax (IC50 ≥100 nm), bortezomib (IC50 ≥50 nm) and S63845 (IC50 ≥100 nm) resistance was observed in nine (75%), three (25%) and six (50%) HMCLs, respectively. Moreover, venetoclax sensitivity was independent of bortezomib (R2 = 0.1107) or S63845 (R2 = 0.0213) sensitivity. Venetoclax sensitivity correlated with high mRNA ratio of BCL2/MCL1 (P = 0.0091), BCL2/BCL2L1 (P = 0.0182) and low MCL1 expression (P = 0.0091). In HMCLs sensitive to both venetoclax and bortezomib/S63845, venetoclax combined with S63845 showed stronger synergistic effect than combined with bortezomib. Moreover, in venetoclax-resistant HMCLs, S63845, but not bortezomib, significantly restored venetoclax sensitivity. Conversely, bortezomib combined with S63845 did not result in augmented bortezomib sensitivity or abolishment of bortezomib resistance. Conclusions Regardless of t(11;14), combination of venetoclax with S63845 is a promising strategy in enhancing venetoclax sensitivity or overcoming venetoclax resistance in myeloma therapy, hence warrant future clinical studies.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3