Taste masking of water-soluble drug by solid lipid microspheres: a child-friendly system established by reversed lipid-based nanoparticle technique

Author:

Zhang Yadan12,Shen Liao12,Wang Tao12,Li Haiyan12,Huang Ri3,Zhang Zhen12,Wang Yongan12,Quan Dongqin12ORCID

Affiliation:

1. Institutes of Pharmacology and Toxicology, Academy of Military Medical Science, Beijing, China

2. State Key Laboratory of Toxicology and Medical Counter Measures, Beijing, China

3. Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China

Abstract

Abstract Objectives A child-friendly taste-masking strategy using solid lipid microsphere (SLM) has been proposed to obscure the undesirable taste of some water-soluble drugs. In this study, the reversed lipid-based nanoparticle (RLBN) technique was used to encapsulate a water-soluble drug to facilitate the preparation of SLM. Methods The model drug used was atomoxetine hydrochloride (ATX), and a three-step method was used to prepare ATX-RLBN. Taste-masking microsphere (ATX-RLBN-SLM) was prepared by the spray chilling method. The drug release mechanism was studied by high-performance liquid chromatography and scanning electron microscopy. Moreover, in vitro taste evaluation method was established and ATX bioavailability was investigated employing pharmacokinetic studies. Key findings The obtained ATX-RLBN-SLM had smooth spherical particles with a size of about 80 μm. The drug encapsulation and loading efficiencies were 98.28% ± 0.59% and 0.89% ± 0.04%, respectively. In vitro drug release studies showed that nearly 96% drug was retained in the microspheres within 10 min at pH 6.8 and a complete release was triggered by lipase, accompanied by variation in the morphology. Taste assessment revealed that ATX-RLBN-SLM could efficiently mask the bitter taste and improved the bioavailability of ATX. Conclusions Atomoxetine hydrochloride-reversed lipid-based nanoparticle-solid lipid microsphere exhibited excellent taste-masking effect with negligible leakage in the oral cavity environment and thorough collapse upon lipase stimulation, simultaneously enhancing the bioavailability of ATX. The study paves a new way to efficiently mask the undesirable taste of some water-soluble drugs.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference26 articles.

1. Dosage form design and development;Allen;Clin Ther,2008

2. Optimizing oral medications for children;Mennella;Clin Ther,2008

3. Taste masking techniques for bitter drugs-an overview;Momin;Int J Pharm Technol,2012

4. Paediatric and geriatric drug delivery;Breitkreutz;Expert Opin Drug Deliv,2007

5. Stability, dose uniformity, and palatability of three counterterrorism drugs—human subject and electronic tongue studies;Sadrieh;Pharm Res,2005

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3