Pyoluteorin induces cell cycle arrest and apoptosis in human triple-negative breast cancer cells MDA-MB-231

Author:

Ding Ting1,Yang Luo-Jie2,Zhang Wei-Dong13,Shen Yun-Heng3ORCID

Affiliation:

1. State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China

2. Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China

3. School of Pharmacy, Second Military Medical University, Shanghai, China

Abstract

Abstract Objectives To screen the cytotoxic activity of six secondary metabolites isolated from soil fungus Aspergillus niger. Importantly, to investigate the mechanism that pyoluteorin induced human triple-negative breast cancer MDA-MB-231 cells apoptosis in vitro. Methods The cell viability assay was tested with CTG assay. Cell cycle, apoptosis and intracellular reactive oxygen species (ROS) production assay were tested with flow cytometry. Additionally, intracellular ROS production assay and mitochondrial membrane potential assay were determined with laser scanning confocal microscopy. The expression of apoptosis-related proteins was determined with Western blot. Key findings Pyoluteorin displayed significantly selective cytotoxicity against human triple-negative breast cancer MDA-MB-231 cells (IC50 = 0.97 µm) with low toxicity against human breast epithelial cell MCF-10A. It was found that pyoluteorin could arrest MDA-MB-231 cells cycle at G2/M phase and induce cell apoptosis. Further experiments demonstrated that the apoptosis-inducing effect of pyoluteorin was related to reduction of mitochondrial membrane potential, accumulation of ROS and change of apoptosis-related protein expressions. Conclusion Our studies revealed that pyoluteorin had potent proliferation inhibition against MDA-MB-231 cells through arresting cell cycle at G2/M phase and inducing caspase-3-dependent apoptosis by mitochondrial pathway, implying that pyoluteorin may be a potential lead compound for drug discovery of human triple-negative breast cancer.

Funder

Professor of Chang Jiang Scholars Program, Shanghai Engineering Research Center for the Preparation of Bioactive Natural Products

National Natural Science Foundation of China

National Key Technology R&D Program of China

The Key Research and Development Program of China

National Major Project of China

Scientific Foundation of Shanghai China

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3