Bioactive indanes: insight into the bioactivity of indane dimers related to the lead anti-inflammatory molecule PH46A

Author:

Chan Kit1ORCID,Frankish Neil1ORCID,Zhang Tao12ORCID,Ece Abdulilah3ORCID,Cannon Aoife4ORCID,O'Sullivan Jacintha4ORCID,Sheridan Helen1ORCID

Affiliation:

1. School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin 2, Ireland

2. School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland

3. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Topkapi-Istanbul, Turkey

4. Department of Surgery, School of Medicine, Trinity Translation Medicine Institute (TTMI), St James's Hospital, Dublin 8, Ireland

Abstract

Abstract Objectives PH46A (1) demonstrates significant anti-inflammatory activity in phenotypic models but its mechanism and site of action have been elusive. Current study focused on the bioactivity of PH46 (2) and related novel indane dimers (6-10) to investigate the impact of changes in substitution and stereochemistry at the C-1 and C-2 positions of the PH46 (2) scaffold. Methods Cytotoxicity profiles of compounds were established using THP-1 macrophages and SW480 cells. Effects of the compounds were then evaluated at 10 µm using 5-lipoxygenase (LOX) and 15-LOX enzymes, and 5-LOX binding was evaluated in silico against NDGA, nitric oxide (NO) released from LPS-induced SW480 cells and cytokines in THP-1 macrophages (IL-6, IL-1β, TNF-α and IFN-γ) and in SW480 cells (IL-8). Key findings PH46 (2) and 7 cause reduction in NO, inhibition of 5-LOX with high binding energy and no cytotoxicity effects in THP-1 macrophages and SW480 cell lines (up to 50 µm). The cytokine profiling of the series demonstrated inhibition of IL-6 and TNF-α in THP-1 macrophages together with IL-8 in SW480 cells. Conclusions The observed profile of cytokine modulation (IL-6/ TNF-α, IL-8) and inhibition of release of NO and 5-LOX may contribute to the in vivo effects demonstrated by indane dimers and PH46A (1) in murine models of colitis.

Funder

Wellcome Trust

Trinity College Dublin

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3