Transcriptome analysis of drought‐responsive and drought‐tolerant mechanisms in maize leaves under drought stress

Author:

Jiang Yuan1ORCID,Su Shengzhong1,Chen Hao1,Li Shipeng1,Shan Xiaohui1,Li He1,Liu Hongkui1,Dong Haixiao1,Yuan Yaping1

Affiliation:

1. Jilin Engineering Research Center for Crop Biotechnology Breeding College of Plant Science, Jilin University Changchun China

Abstract

AbstractMaize is a major crop essential for food and feed, but its production is threatened by various biotic and abiotic stresses. Drought is one of the most common abiotic stresses, causing severe crop yield reduction. Although several studies have been devoted to selecting drought‐tolerant maize lines and detecting the drought‐responsive mechanism of maize, the transcriptomic differences between drought‐tolerant and drought‐susceptible maize lines are still largely unknown. In our study, RNA‐seq was performed on leaves of the drought‐tolerant line W9706 and the drought‐susceptible line B73 after drought treatment. We identified 3147 differentially expressed genes (DEGs) between these two lines. The upregulated DEGs in W9706 were enriched in specific processes, including ABA signaling, wax biosynthesis, CHO metabolism, signal transduction and brassinosteroid biosynthesis‐related processes, while the downregulated DEGs were enriched in specific processes, such as stomatal movement. Altogether, transcriptomic analysis suggests that the different drought resistances were correlated with the differential expression of genes, while the drought tolerance of W9706 is due to the more rapid response to stimulus, higher water retention capacity and stable cellular environment under water deficit conditions.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3