Direct and higher‐order interactions in plant communities under increasing weather persistence

Author:

Reynaert Simon1ORCID,Lembrechts Jonas J.1ORCID,De Boeck Hans J.1,Donnelly Chase2,Zi Lin3,Li Lingjuan1,Nijs Ivan1

Affiliation:

1. Department of Biology, Plants and Ecosystems (PLECO), University of Antwerp Wilrijk Belgium

2. Department of Computer Science, Adrem Data Lab (Adrem), University of Antwerp Antwerp Belgium

3. Department of Biology, Integrated Molecular Plant Physiology Research (IMPRES), University of Antwerp Antwerp Belgium

Abstract

Climate change is increasing the weather persistence in the mid‐latitudes, prolonging both dry and wet spells compared to historic averages. These newly emerging environmental conditions destabilize plant communities, but the role of species interactions in this process is unknown. Here, we tested how direct and higher‐order interactions (HOIs) between species may change in synthesized grassland communities along an experimental gradient of increasing persistence in precipitation regimes. Our results indicate that species interactions (including HOIs) are an important determinant of plant performance under increasing weather persistence. Out of the 12 most parsimonious models predicting species productivity, 75% contained significant direct interactions and 92% significant HOIs. Inclusion of direct interactions or HOIs respectively tripled or quadrupled the explained variance of target species biomass compared to null models only including the precipitation treatment. Drought was the main driver of plant responses, with longer droughts increasing direct competition but also HOI‐driven facilitation. Despite these counteracting changes, drought intensified net competition. Grasses were generally more involved in competitive interactions whereas legumes were more involved in facilitative interactions. Under longer drought, species affinity for nutrient rich or wet environments resulted in more negative direct interactions or HOIs, respectively. We conclude that HOIs, crucially depending on species identity, only partially stabilize community dynamics under increasing weather persistence.Keywords: drought, facilitation and competition, grasslands, higher‐order interactions, increasing weather persistence, species interactions

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3