Multi‐source detrital contributions in the Po alluvial basin (northern Italy) since the Middle Pleistocene. Insights into sediment accumulation in intermediate sinks

Author:

Demurtas Luca1ORCID,Fontana Daniela1,Lugli Stefano1ORCID,Bruno Luigi1

Affiliation:

1. Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Modena Italy

Abstract

AbstractIntegrated stratigraphic‐compositional studies on alluvial successions provide a valuable tool to investigate the provenance of detritus in multi‐source systems. The Po Plain is an intermediate sink of the Po‐Adriatic source‐to‐sink system, fed by rivers draining two orogens. The Alps are characterized by extensive outcrops of plutonic‐metamorphic and ultramafic rocks to the north‐west and of Mesozoic carbonates to the east (Southern Alps). The Northern Apennines, to the south, are dominated by sedimentary successions. The Po River flows from the Western Alps to the Adriatic Sea, interacting with a dense network of transverse tributaries that drain the two orogens. Stratigraphic, sedimentological and compositional analyses of two 101 and 77.5 m‐long cores, recovered from the Central Po Plain, reveal the stacking of three petrofacies, which reflects distinct provenance and configurations of the fluvial network. A South‐Alpine sedimentary input between MIS 12 and MIS 10 is testified by petrofacies 1, characterized by carbonate‐ and volcanic‐rich detritus from rocks exposed in the Southern Alps. A northward shift of the Po River of more than 30 km is marked by a quartz‐feldspar and metamorphic‐rich detritus (petrofacies 2), similar to modern Po River sands. This dramatic reorganization of the fluvial network likely occurred around MIS 9–MIS 8 and is possibly structurally controlled. A further northward shift of the Po River and the onset of Apennine sedimentation in the Late Holocene is revealed by petrofacies 3, rich in sedimentary lithics from the Apennine successions. The results of this study document how compositional analysis, if framed in a robust stratigraphic picture, may provide clues on the evolution of multi‐source alluvial systems.

Funder

Università Degli Studi di Modena e Reggio Emila

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3