Exploring resource patch occupancy: patch size, but not connectivity, explains the abundance of spider kleptoparasites in golden orb webs

Author:

Gregorič M.12ORCID,Quiñones‐Lebrón S. G.3,Kuntner M.1456,Agnarsson I.567

Affiliation:

1. Jovan Hadži Institute of Biology Research Centre of the Slovenian Academy of Sciences and Arts Ljubljana Slovenia

2. Postgraduate School ZRC SAZU Ljubljana Slovenia

3. Morigenos‐Slovenian Marine Mammal Society Piran Slovenia

4. Department of Organisms and Ecosystems Research National Institute of Biology Ljubljana Slovenia

5. Department of Entomology, National Museum of Natural History Smithsonian Institution Washington DC USA

6. State Key Laboratory of Biocatalysis and Enzyme Engineering, and Centre for Behavioural Ecology and Evolution, School of Life Sciences Hubei University Wuhan Hubei China

7. Faculty of Life and Environmental Sciences University of Iceland Reykjavik Iceland

Abstract

AbstractThe ideal free distribution (IFD) theory predicts that individuals are free to move among habitat patches and distribute among them “ideally,” in order to maximize individual evolutionary fitness. Size and quality of habitat patches then should directly impact the number of individuals occupying them, and connectivity of habitat patches likely plays a role if dispersal is limited. However, habitat patches can be distributed so that movement no longer can be considered free, for example, when patches are isolated. Challenges stemming from patch delimitation and detection rate of occupants further complicate efforts attempting to resolve such patterns. Here, we utilize as habitat patches the orb webs of four different populations belonging to three golden orb weaver spider species, Nephila pilipes (Fabricius, 1793), Nephilingis livida (Vinson, 1863), and Trichonephila clavipes (Linnaeus, 1767), and the obligate spider kleptoparasites (Argyrodinae, Theridiidae) that are associated with their webs. We examine how the IFD predicts the abundance of kleptoparasites under different patterns of patch size and distribution. We found that larger host webs, that is, habitat patches that contain more resources, are occupied by a higher number of kleptoparasitic spiders, regardless of their degree of isolation. Although the free movement prediction is often violated in natural systems, we find no evidence for habitat patch connectivity affecting the abundance of kleptoparasites, indicating that their dispersal ability facilitates the location and colonization of habitat patches regardless of their isolation. Therefore, our results support the interaction between argyrodine kleptoparasitic spiders and the webs of golden orb weavers to be a suitable natural system for studying the IFD.

Funder

National Geographic Society

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3