Polysaccharide extracted from Atractylodes macrocephala improves the spleen deficiency constipation in mice by regulating the gut microbiota to affect the 5‐HT synthesis

Author:

Chen Lei1,Chang Xiangbing1,Wu Chuntao1,Luo Guofu1,Zhang Peifeng1,Tian Wei1

Affiliation:

1. College of Food and Health Zhejiang Agriculture and Forestry University Hangzhou China

Abstract

AbstractBackgroundThe traditional herbal medicine Atractylodes macrocephala Koidz. (A. macrocephala) is commonly utilized for alleviating symptoms associated with spleen deficiency, abdominal distension, diarrhea, and constipation. These pharmacological effects are attributed to a variety of active constituents. However, the specific bioactive compounds responsible for promoting defecation and gastrointestinal transit in A. macrocephala remain unidentified.MethodsThe primary polysaccharide characteristics of PAMK was elucidated by HPLC, FT‐IR, and HGPGC. Efficacy of PAMK (0.07, 0.14, and 0.28 mg/g) on mice was evaluated in a spleen deficiency constipation mouse model by analyzing stool parameters, constipation‐related physiological indexes, and SCFAs. The expression levels of 5‐HT3R, 5‐HT4R, and related receptor genes were examined by RT‐qPCR, and neurotransmitters were examined using ELISA. Finally, the diversity of gut microbiota was analyzed with 16S rDNA sequencing.Key ResultsThe results showed that PAMK significantly reduced the gastrointestinal transport time and increased the number of fecal pellets and fecal water content in spleen deficiency constipation model mice. PAMK kept the balance of 5‐HT, SCFAs, TPH‐1, SERT, CgA, and neurotransmitter levels (VIP, SP, MTL) in mice colon. In addition, PAMK could regulate the abundance of gut microbiota such as Alistopes, Bacteroides, and Odoribacter in spleen deficiency constipation model mice gut.Conclusions and InferencesIt can be concluded that PAMK effectively ameliorated the symptoms of spleen deficiency constipation in mice by modulating the expression of 5‐HT and its associated receptors. The underlying mechanism was elucidated, providing a solid theoretical foundation for the therapeutic application of A. macrocephala in treating spleen deficiency constipation and offering potential for developing novel approaches to address this condition.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3