High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and nonureolytic bacterial strains

Author:

Harnpicharnchai P.1ORCID,Mayteeworakoon S.1,Kitikhun S.1,Chunhametha S.1,Likhitrattanapisal S.1ORCID,Eurwilaichitr L.2,Ingsriswang S.1ORCID

Affiliation:

1. National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency Pahonyothin Road Pathum Thani Thailand

2. National Science and Technology Development Agency Phahonyothin Road Pathum Thani Thailand

Abstract

Abstract This study demonstrates a remarkably high level of microbial-induced calcium carbonate precipitation (MICP) using a mixed culture containing TBRC 1396 (Priestia megaterium), TBRC 8147 (Neobacillus drentensis) and ATCC 11859 (Sporosarcina pasteurii) bacterial strains. The mixed culture produced CaCO3 weights 1·4 times higher than those obtained from S. pasteurii, the gold standard for efficient MICP processes. The three strains were selected after characterization of various Bacillus spp. and related species for their ability to induce the MICP process, especially in an alkaline and high-temperature environment. Results showed that the TBRC 1396 and TBRC 8147 strains, as well as TBRC 5949 (Bacillus subtilis) and TBRC 8986 (Priestia aryabhattai) strains, could generate calcium carbonate at pH 9–12 and temperature 30–40°C, which is suitable for construction and consolidation purposes. The TBRC 8147 strain also exhibited CaCO3 precipitation at 45°C. The TBRC 8986 and TBRC 8147 strains are nonureolytic bacteria capable of MICP in the absence of urea, which can be used to avoid the generation of undesirable ammonia associated with the ureolytic MICP process. These findings facilitate the successful use of MICP as a sustainable and environmentally friendly technology for the development of various materials, including self-healing concrete and soil consolidation.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3