Rapid detection of Actinobacillus pleuropneumoniae targeting the apxIVA gene for diagnosis of contagious porcine pleuropneumonia in pigs by polymerase spiral reaction

Author:

Sarkar R.1,Roychoudhury P.1,Kumar S.1,Dutta S.1,Konwar N.1,Subudhi P. K.1,Dutta T. K.1ORCID

Affiliation:

1. Department of Veterinary Microbiology Central Agricultural University Aizawl Mizoram India

Abstract

Abstract Actinobacillus pleuropneumoniae is the primary aetiological agent of contagious porcine pleuropneumonia associated with serious economic impact on pig husbandry worldwide. Diagnosis of the disease by existing techniques including isolation and identification of bacteria followed by serotyping, serological techniques, conventional PCR, real-time PCR and LAMP assays are cumbersome, time-consuming, costly and not suitable for rapid field application. A novel isothermal polymerase chain reaction (PSR) technique is standardized for all the reagents, incubation time and incubation temperature against A. pleuropneumoniae. The sensitivity of the assay was determined against various dilutions of purified DNA and total bacterial count. The specificity of the assay was determined against 11 closely related bacterial isolates. The relative sensitivity and specificity were compared with bacterial isolation, conventional PCR and real-time PCR assays. The PSR assay for specific detection was standardized at 64°C for 30 min of incubation in a water bath. The result was visible by the naked eye after centrifugation of the reaction mixture or after incorporation of SYBR Green dye as yellowish-green fluorescence. The technique was found to be 100% specific and equally sensitive with real-time PCR and 10 times more sensitive than conventional PCR. The PSR assay could be applicable in the detection of the organisms in porcine nasal swabs spiked with A. pleuropneumoniae. This is the first-ever report on the development of PSR for specific detection of A. pleuropneumoniae and can be applied for early diagnosis at the field level.

Funder

Department of Biotechnology, Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3