ASPN Synergizes with HAPLN1 to Inhibit the Osteogenic Differentiation of Bone Marrow Mesenchymal Stromal Cells and Extracellular Matrix Mineralization of Osteoblasts

Author:

Zhou Guohui1,Yan Xinmin1,Chen Zhenfei2,Zeng Xing1,Wu Fangqian3ORCID

Affiliation:

1. Department of Orthopaedics First People's Hospital of Fuzhou Fuzhou China

2. Hospital‐Acquired Infection Control Department First People's Hospital of Fuzhou Fuzhou China

3. Department of Spine Surgery First People's Hospital of Fuzhou Fuzhou China

Abstract

ObjectiveBone marrow mesenchymal stromal cells (BMSCs) are major sources of osteogenic precursor cells in bone remodeling, which directly participate in osteoporosis (OP) progression. However, the involved specific mechanisms of BMSCs in OP warrant mass investigations. Initially, our bioinformatics analysis uncovered the prominent up‐regulation of Asporin (ASPN) and proteoglycan link protein 1 (HAPLN1) in osteoblasts (OBs) of OP patients and their possible protein interaction. Hence, this study aimed to explore the effects of ASPN and HAPLN1 on osteogenic differentiation of BMSCs, extracellular matrix (ECM) mineralization of OBs, and osteoclastogenesis, hoping to offer research basis for OP treatment.MethodsGSE156508 dataset was used for analysis and screening to acquire the differentially expressed genes in OBs of OP patients, followed by the predicative analysis via STRING. OP mouse models were induced by ovariectomy (OVX), and ASPN and HAPLN1 expression was determined. BMSCs and bone marrow macrophages (BMMs) were isolated from OVX mice and induced for osteogenic differentiation and osteoclastogenesis, respectively. After knockdown experiments, we assessed adipogenic differentiation and osteogenic differentiation in BMSCs. Osteogenic (OPN, OCN, and COL1A1) and osteoclast (Nfatc1 and c‐Fos) marker protein expression was determined. The binding of ASPN to HAPLN1 was analyzed.ResultsHigh expression of ASPN and HAPLN1 and their protein interaction were observed in OBs of OP patients via bioinformatics and in bone tissues of OVX mice. ASPN interacted with HAPLN1 in BMSCs of OVX mice. ASPN/HAPLN1 knockdown increased ALP, OPN, OCN, and COL1A1 protein expression and ECM mineralization in BMSCs while decreasing Nfatc1 and c‐Fos expression in BMMs. These effects were aggravated by the simultaneous knockdown of ASPN and HAPLN1.ConclusionOur results indicate that ASPN synergises with HAPLN1 to suppress the osteogenic differentiation of BMSCs and ECM mineralization of OBs and promote the osteoclastogenesis in OP.

Publisher

Wiley

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3