Sex‐specific gene expression in eastern oyster, Crassostrea virginica, gonad and mantle tissues

Author:

Proestou Dina A.1ORCID,Delomas Thomas A.1,Sullivan Mary E.1,Markey Lundgren Kathryn1

Affiliation:

1. USDA Agricultural Research Service National Cold Water Marine Aquaculture Center Kingston Rhode Island USA

Abstract

AbstractThe eastern oyster (Crassostrea virginica) is a protandrous hermaphrodite of commercial importance. As with many marine invertebrates, little is known about sex determination and differentiation systems in this species. Such knowledge has important implications not only for understanding the evolution of sex but also for applied questions in aquaculture. In order to examine mechanistic differences in reproductive development between the sexes, we compared the transcriptomes of gonad and mantle tissues from six male and six female oysters. A total of 7675 transcripts were differentially expressed between male and female gonads (3936 and 3739 were upregulated in males and females, respectively). Transcripts identified include those associated with sex in other invertebrate and vertebrate species such as Dmrt1, Sox‐30, Bindin, Dpy‐30, and Histone H4 in males and Foxl2, Vitellogenin, and Bystin in females. GO terms associated with transcripts upregulated in male gonads include protein modification, reproductive process, and cell projection organization, whereas RNA metabolic process and amino acid metabolic process were associated with transcripts upregulated in females. Far fewer transcripts were differentially expressed between male and female mantle tissues, with 87 transcripts upregulated in females and 16 upregulated in males. However, 41% of transcripts identified as differentially expressed between mantle tissues were also differentially expressed between male and female gonads including Histone H4 and Bystin. This study represents the first characterization of eastern oyster male and female gonad transcriptomes. We further identify differing expression profiles between male and female mantle tissues, which provides evidence for sex‐specific functions of the mantle and suggests that this tissue could harbor biomarkers for identifying oyster sex non‐destructively.

Funder

U.S. Department of Agriculture

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3