GANtlitz: Ultra High Resolution Generative Model for Multi‐Modal Face Textures

Author:

Gruber A.12ORCID,Collins E.2,Meka A.2ORCID,Mueller F.2ORCID,Sarkar K.2ORCID,Orts‐Escolano S.2ORCID,Prasso L.2,Busch J.2,Gross M.1ORCID,Beeler T.2ORCID

Affiliation:

1. ETH Zurich Switzerland

2. Google

Abstract

AbstractHigh‐resolution texture maps are essential to render photoreal digital humans for visual effects or to generate data for machine learning. The acquisition of high resolution assets at scale is cumbersome, it involves enrolling a large number of human subjects, using expensive multi‐view camera setups, and significant manual artistic effort to align the textures. To alleviate these problems, we introduce GANtlitz (A play on the german noun Antlitz, meaning face), a generative model that can synthesize multi‐modal ultra‐high‐resolution face appearance maps for novel identities. Our method solves three distinct challenges: 1) unavailability of a very large data corpus generally required for training generative models, 2) memory and computational limitations of training a GAN at ultra‐high resolutions, and 3) consistency of appearance features such as skin color, pores and wrinkles in high‐resolution textures across different modalities. We introduce dual‐style blocks, an extension to the style blocks of the StyleGAN2 architecture, which improve multi‐modal synthesis. Our patch‐based architecture is trained only on image patches obtained from a small set of face textures (<100) and yet allows us to generate seamless appearance maps of novel identities at 6k × 4k resolution. Extensive qualitative and quantitative evaluations and baseline comparisons show the efficacy of our proposed system. (see https://www.acm.org/publications/class-2012)

Publisher

Wiley

Reference68 articles.

1. Abrevaya Victoria Wuhrer Stefanie andBoyer Edmond. “Multilinear Autoencoder for 3D Face Model Learning”. Mar.2018 1–9. doi:10.1109/WACV.2018.000072.

2. Bermano Amit Haim Gal Rinon Alaluf Yuval et al. “State-of-the-Art in the Architecture Methods and Applications of StyleGAN”.Computer Graphics Forum(2022). issn: 1467-8659. doi:10.1111/cgf.145032.

3. Bao Linchao Lin Xiangkai Chen Yajing et al.High-Fidelity 3D Digital Human Head Creation from RGB-D Selfies.2021. arXiv: 2010.05562 [cs.CV] 2.

4. Buehler Marcel C. Meka Abhimitra Li Gengyan et al. “VariTex: Variational Neural Face Textures”.Proceedings of the IEEE/CVF International Conference on Computer Vision.20212.

5. B R Mallikarjun Tewari Ayush Seidel Hans-Peter et al. “Learning Complete 3D Morphable Face Models from Images and Videos”.Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.20212.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3