Heterogeneous diacylglycerol acyltransferase expression enhances lipids and PUFA in Chlorella species

Author:

Nawkarkar Prachi1ORCID,Kapase Vikas U.1,Chaudhary Sarika2,Kajla Sachin3,Kumar Shashi1ORCID

Affiliation:

1. International Centre for Genetic Engineering and Biotechnology New Delhi India

2. Department of Biotechnology Bennett University Greater Noida India

3. Tata Steel Limited, Research & Development Jamshedpur India

Abstract

AbstractAlgae have been explored for renewable energy, nutraceuticals, and value‐added products. However, low lipid yield is a significant impediment to its commercial viability. Genetic engineering can improve the fatty acid profile of algae without compromising its growth. This study introduced the diacylglycerol acyltransferase (BnDGAT) gene from Brassica napus into Chlorella sorokiniana‐I, a fast‐growing and thermotolerant natural strain isolated from wastewater, which increased its intracellular lipid accumulation. Hygromycin‐resistant cells were selected, and enhanced green florescence protein fluorescence was used to distinguish pure transgenic cell lines from mixed cultures. Compared to the wild type, BnDGAT expression in transgenic C. sorokiniana‐I caused a threefold increase in non‐polar lipid and a twofold increase in polyunsaturated fatty acids. Nile red staining reaffirmed the presence of higher intracellular lipid bodies in transgenic cells. There was a substantial alteration in the fatty acid profile of transgenic alga expressing BnDGAT. The non‐essential omega 9 (C18: 1) fatty acid decreased (5%–7% from 18%), while alpha‐linolenic acid, an essential omega 3 fatty acid (C18: 3), was increased (23%–24% from 11%). This study substantiates a valuable strategy for enhancing essential omega‐3 fatty acids and neutral lipids to improve its nutritional value for animal feed. The increased lipid productivity should reduce the cost of producing fatty acid methyl esters (FAME). Improved FAME quality should address the clouding issues in cold regions.

Funder

Department of Biotechnology, Government of West Bengal

Publisher

Wiley

Subject

Waste Management and Disposal,Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3