The energy–water limitation threshold explains divergent drought responses in tree growth, needle length, and stable isotope ratios

Author:

Dudney Joan12ORCID,Latimer Andrew M.3,van Mantgem Phillip4,Zald Harold5,Willing Claire E.67ORCID,Nesmith Jonathan C. B.8,Cribbs Jennifer3,Milano Elizabeth49

Affiliation:

1. Environmental Studies Program Santa Barbara California USA

2. Bren School of Environmental Science & Management UC Santa Barbara Santa Barbara California USA

3. Department of Plant Sciences University of California Davis California USA

4. U.S. Geological Survey Western Ecological Research Center Sacramento California USA

5. USDA Forest Service Pacific Northwest Research Station Corvallis Oregon USA

6. Department of Biology Stanford University Stanford California USA

7. School of Environmental and Forest Sciences University of Washington Seattle Washington USA

8. USDA Forest Service Pacific Northwest Research Station Portland Oregon USA

9. USDA Forest Service Rocky Mountain Research Station Moscow Idaho USA

Abstract

AbstractPredicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co‐occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12–9.51°C; estimated using fall‐spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13C) and nitrogen (δ15N) stable isotope ratios, that emerged during drought. These co‐occurring thresholds reflected the transition between energy‐ and water‐limited tree growth (i.e., the E–W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth‐defense trade‐offs and drought adaptations. Furthermore, whitebark pine growing in energy‐limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water‐limited regions, threatening the long‐term sustainability of the recently listed whitebark pine species in the Sierra Nevada.

Funder

National Science Foundation

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3