The use of nomogram for detecting mild cognitive impairment in patients with type 2 diabetes mellitus

Author:

Maimaitituerxun Rehanguli12ORCID,Chen Wenhang3,Xiang Jingsha4,Xie Yu12,Kaminga Atipatsa C.5,Wu Xin Yin12,Chen Letao6,Yang Jianzhou7,Liu Aizhong12,Dai Wenjie12

Affiliation:

1. Department of Epidemiology and Health Statistics, Xiangya School of Public Health Central South University Changsha China

2. Hunan Provincial Key Laboratory of Clinical Epidemiology Changsha China

3. Department of Nephrology, Xiangya Hospital Central South University Changsha China

4. Human Resources Department Central Hospital Affiliated to Shandong First Medical University Jinan China

5. Department of Mathematics and Statistics Mzuzu University Mzuzu Malawi

6. Infection Control Center, Xiangya Hospital Central South University Changsha China

7. Department of Preventive Medicine Changzhi Medical College Changzhi China

Abstract

AbstractBackgroundType 2 diabetes mellitus (T2DM) is highly prevalent worldwide and may lead to a higher rate of cognitive dysfunction. This study aimed to develop and validate a nomogram‐based model to detect mild cognitive impairment (MCI) in T2DM patients.MethodsInpatients with T2DM in the endocrinology department of Xiangya Hospital were consecutively enrolled between March and December 2021. Well‐qualified investigators conducted face‐to‐face interviews with participants to retrospectively collect sociodemographic characteristics, lifestyle factors, T2DM‐related information, and history of depression and anxiety. Cognitive function was assessed using the Mini‐Mental State Examination scale. A nomogram was developed to detect MCI based on the results of the multivariable logistic regression analysis. Calibration, discrimination, and clinical utility of the nomogram were subsequently evaluated by calibration plot, receiver operating characteristic curve, and decision curve analysis, respectively.ResultsA total of 496 patients were included in this study. The prevalence of MCI in T2DM patients was 34.1% (95% confidence interval [CI]: 29.9%–38.3%). Age, marital status, household income, diabetes duration, diabetic retinopathy, anxiety, and depression were independently associated with MCI. Nomogram based on these factors had an area under the curve of 0.849 (95% CI: 0.815–0.883), and the threshold probability ranged from 35.0% to 85.0%.ConclusionsAlmost one in three T2DM patients suffered from MCI. The nomogram, based on age, marital status, household income, duration of diabetes, diabetic retinopathy, anxiety, and depression, achieved an optimal diagnosis of MCI. Therefore, it could provide a clinical basis for detecting MCI in T2DM patients.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3