CircMAP3K5 promotes cardiomyocyte apoptosis in diabetic cardiomyopathy by regulating miR‐22‐3p/DAPK2 Axis

Author:

Shen Ming12ORCID,Wu Yuanbin3,Li Libing1,Zhang Liyue1,Liu Gang2,Wang Rong1

Affiliation:

1. Department of Cardiovascular Surgery The First Medical Center of PLA General Hospital Beijing China

2. Department of Cardiology The First Hospital of Hebei Medical University Shijiazhuang China

3. Department of Emergency The Seventh Medical Center of PLA General Hospital Beijing China

Abstract

AbstractBackgroundDiabetic cardiomyopathy (DCM) is one of the serious complications of the accumulated cardiovascular system in the long course of diabetes. To date, there is no effective treatment available for DCM. Circular RNA (circRNA) is a novel r2egulatory RNA that participates in a variety of cardiac pathological processes. However, the regulatory role of circular RNA MAP3K5 (circMAP3K5) in DCM is largely unclear.Methods and ResultsMicroarray analysis of DCM rats' heart circular RNAs was performed and the highly species‐conserved circRNA mitogen‐activated protein kinase kinase kinase 5 (circMAP3K5) was identified, which participates in DCM processes. High glucose‐provoked cardiotoxicity leads to the up‐regulation of circMAP3K5, which mechanistically contributes to cardiomyocyte cell death. Also, in high glucose‐induced H9c2 cardiomyocytes, the level of apoptosis was significantly increased, as well as the expression of circMAP3K5. In contrast, the depletion of circMAP3K5 could reduce high glucose‐induced apoptosis in cardiomyocytes. In terms of mechanism, circMAP3K5 acts as a miR‐22‐3p sponge and miR‐22‐3p directly target death‐associated protein kinase 2 (DAPK2) in H9c2 cardiomyocytes, where in circMAP3K5 upregulates DAPK2 expression by targeting miR‐22‐3p. Moreover, we also found that miR‐22‐3p inhibitor and pcDNA DAPK2 could antagonize the protective effects brought by the depletion of circMAP3K5.ConclusionCircMAP3K5 is a highly conserved noncoding RNA that is upregulated during DCM process. We concluded that circMAP3K5 promotes high glucose‐induced cardiomyocyte apoptosis by regulating the miR‐22‐3p/DAPK2 axis. The results of this study highlight a novel and translationally important circMAP3K5‐based therapeutic approach for DCM.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3