Evolutions in machine learning technology for financial distress prediction: A comprehensive review and comparative analysis

Author:

El Madou Kaoutar1ORCID,Marso Said2,El Kharrim Moad3ORCID,El Merouani Mohamed1

Affiliation:

1. Faculty of Sciences Abdelmalek Essaadi University Tetouan Morocco

2. Multidisciplinary Faculty Cadi Ayyad University Safi Morocco

3. Faculty of Legal Economic and Social Sciences Abdelmalek Essaadi University Tetouan Morocco

Abstract

AbstractIn recent years, financial distress prediction (FDP), also known as corporate failure prediction or bankruptcy prediction, has gained significant importance due to its impact on organizations, especially during unexpected events like pandemics and wars. Machine learning (ML) models have emerged as innovative and essential tools in predicting financial distress, leveraging the ever‐increasing volume of databases and computing power. This study utilizes bibliographic techniques to contribute to the field's literature review to address the disorganized nature of the existing literature on FDP, reduce confusion, and provide clarity to domain researchers. These techniques enable identifying the progress of articles published over the years, influential authors, and highly cited articles. Additionally, the study examines crucial aspects of data preprocessing, such as missing data, imbalanced data, feature selection, and outliers, as they significantly impact the robustness and performance of ML models. Furthermore, it discusses essential models employed in FDP, focusing on recent advancements that represent promising trends. In conclusion, this study contributes to the field by uncovering novel trends and proposing possible directions for advancing FDP research. These findings will guide researchers, practitioners, and stakeholders in their quest for improved prediction and decision‐making in financial distress.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3