Prediction of US 30‐years‐treasury‐bonds movement and trading entry point using the robust 1DCNN‐BiLSTM‐XGBoost algorithm

Author:

El Zaar Abdellah1ORCID,Benaya Nabil1ORCID,Bakir Toufik2,Mansouri Amine2,El Allati Abderrahim1

Affiliation:

1. Laboratory of R&D in Engineering Sciences FST Al‐Hoceima, Abdelmalek Essaadi University Tetouan Morocco

2. IMVIA Laboratory University of Burgundy Dijon France

Abstract

AbstractThis article presents a novel algorithm that accurately predicts market trends and identifies trading entry points for US 30‐year Treasury bonds. The proposed method employs a hybrid approach, integrating a 1‐dimensional convolutional neural network (1DCNN), long‐short term memory (LSTM), and XGBoost algorithms. The 1DCNN is used to learn local and short‐term patterns, while LSTM is employed to capture both short and long‐term dependencies. Furthermore, we have implemented an algorithm that utilizes hull moving average (HMA) and simple moving average (SMA) crossover data to detect trading entry points and major trends in the market. The combination of the SMA–HMA crossover algorithm and predictions provided by the 1DCNN‐BiLSTM‐XGBoost algorithm yields exceptional results in terms of prediction accuracy and profitability. Additionally, these integrated techniques effectively filter out noise and mitigate false breakouts, which are often observed with US 30‐year Treasury bonds. In the field of financial time series prediction, the effectiveness of 1DCNN and LSTM in identifying trading entry points and market perturbations has not been comprehensively studied. Therefore, our work fills this gap by demonstrating through experiments that the proposed 1DCNN‐BiLSTM‐XGBoost algorithm, in combination with moving average crossovers, effectively reduces noise and market perturbations. This leads to the precise identification of trading entry points and accurate recognition of trend signals for US 30‐year Treasury bonds. We demonstrate through experiments that our proposed approach achieves an average root mean squared error of 0.0001 and an R‐square value of 0.9999, highlighting its promise as a method for predicting market trends and trading entry points for US 30‐year Treasury bonds.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3