Towards adaptive and transparent tourism recommendations: A survey

Author:

Leal Fátima1ORCID,Veloso Bruno23,Malheiro Benedita34ORCID,Burguillo Juan C.5

Affiliation:

1. REMIT Universidade Portucalense Porto Portugal

2. Faculty of Economics University of Porto Porto Portugal

3. INESC TEC Porto Portugal

4. ISEP/IPP, School of Engineering Polytechnic Institute of Porto Porto Portugal

5. atlanTTic University of Vigo Vigo Spain

Abstract

AbstractCrowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non‐curated nature of the crowd‐originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state‐of‐art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream‐based scenario, and identifies future research opportunities.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Reference146 articles.

1. A review on personalized information recommendation system using collaborative filtering;Abhishek K.;International Journal of Computer Science and Information Technologies,2011

2. Context-aware stream processing for distributed IoT applications

3. Online streaming feature selection with incremental feature grouping

4. Al‐Ghossein M.(2019).Context‐aware recommender systems for real‐worldi applications(PhD thesis). Paris Saclay.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3