Affiliation:
1. Biometric Research Laboratory, Department of Information and Technology Delhi Technological University New Delhi Delhi India
2. Department of Electronics and Communication Engineering Delhi Technological University New Delhi India
Abstract
AbstractAn automated detection of aggressive and violent behaviour in videos has immense potential. It enables efficient online content filtering by restricting access to extreme content and also, when integrated with security systems, helps to monitor violence in surveillance videos. In this work, a convolutional neural network is combined with the proposed Spatial and Channel wise Attention‐based ConvLSTM encoder (SCan‐ConvLSTM). The proposed architecture performs an efficient spatiotemporal fusion of the features extracted from the video sequences containing fight scenes. In order to focus selectively on regions of utmost importance, this blended attention mechanism adjusts the weights of outputs in different locations and across different channels. This recurrent attention mechanism enhances the sequential refinement of activation maps and boosts the model performance. Finally, the experimental results have been presented that show the proposed architecture achieves superior results on the benchmark datasets (RWF‐2000, Violent‐flow, Hockey‐fights, and Movies).
Subject
Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献