Improve the application of reinforcement learning and multi‐modal information in music sentiment analysis

Author:

Yang Qi1,Liu Songhu2,Gong Tianzhuo3ORCID

Affiliation:

1. Opera Troupe China National Opera & Dance Drama Theater Beijing China

2. School of Music The Chinese University of Hong Kong Shenzhen China

3. Academy of Music Capital Normal University Beijing China

Abstract

AbstractIn order to improve the effect of music sentiment analysis, this paper proposes a music sentiment classification method based on lyrics and comments. This method combines lyrics and comment texts to mine richer sentiment information, and comprehensively considers the influence of the word frequency, sentiment strength and part of speech of sentiment words on sentiment classification when constructing sentiment vectors. Moreover, it matches the lyrics of the music and the substantive words in the comment with the emotional dictionary to obtain the emotional category and emotional weight of each substantive word, and calculates the statistical value of each emotional category. In addition, this paper combines reinforcement learning and multi‐modal information technology to construct a music emotion research model.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3