Remote sensing‐based mapping of structural building damage in the Ahr valley

Author:

Samprogna Mohor Guilherme1ORCID,Sieg Tobias1ORCID,Koch Oliver2,Buhrmann Aaron1,Maiwald Holger3ORCID,Schwarz Jochen3,Thieken Annegret H.1ORCID

Affiliation:

1. Institute of Environmental Science and Geography University of Potsdam Potsdam Germany

2. Faculty of Building‐Art‐Materials (formerly at), Department of Civil Engineering Koblenz University of Applied Sciences Koblenz Germany

3. Earthquake Damage Analysis Center (EDAC) Bauhaus‐Universität Weimar Weimar Germany

Abstract

AbstractFlood damage data are needed for various applications. Structural damage of buildings can reflect not only the economic damage but also the life‐threatening condition of a building, which provide crucial information for disaster response and recovery. Since traditional on‐site data collection shortly after a disaster is challenging, remote sensing data can be of great help, cover a wider area and be deployed earlier in time than on‐site surveys. However, this has its challenges and limitations. We elucidate on that by presenting two case studies from flash floods in Germany. First, we assessed the reliability of an existing flood damage schema, which differentiates from minor (structural) damage to complete building collapse. We compared two on‐site raters of the 2016 Braunsbach flood, reaching an excellent level of reliability. Second, we mapped structural building damage after the flood in the Ahr valley in 2021 using a textured 3D mesh and orthophotos. Here, we evaluated the remote sense‐based damage mapping done by three raters. Although the heterogeneity of ratings using remote sensing data is larger than among on‐site ratings, we consider it fit‐for‐purpose when compared with on‐site mapping, especially for event documentation and as basis for financial damage estimation and less complex numerical modelling.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Reference69 articles.

1. High Resolution Imagery Collection for Post-Disaster Studies Utilizing Unmanned Aircraft Systems (UAS)

2. Strengthening resilience in reconstruction after extreme events – Insights from flood affected communities in Germany

3. Forensic hydro-meteorological analysis of an extreme flash flood: The 2016-05-29 event in Braunsbach, SW Germany

4. Bronstert A. Agarwal A. Boessenkool B. Fischer M. Heistermann M. Köhn‐Reich L. Moran T. &Wendi D.(2017).Die Sturzflut von Braunsbach am 29. Mai 2016 – Entstehung Ablauf und Schäden eines ‘Jahrhundertereignisses’. Teil 1: Meteorologische und hydrologische Analyse. Hydrologie Und Wasserbewirtschaftung/BfG – Jahrgang: 61.2017.https://doi.org/10.5675/HYWA_2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3