Flood susceptibility mapping using support vector regression and hyper‐parameter optimization

Author:

Salvati Aryan1ORCID,Nia Alireza Moghaddam1,Salajegheh Ali1,Ghaderi Kayvan2,Asl Dawood Talebpour3,Al‐Ansari Nadhir4,Solaimani Feridon5ORCID,Clague John J.6

Affiliation:

1. Department of Arid and Mountainous Regions Reclamation, Faculty of Natural Resources University of Tehran Karaj Iran

2. Department of Information Technology and Computer Engineering, Faculty of Engineering University of Kurdistan Sanandaj Iran

3. Department of Geomorphology, Faculty of Natural Resources University of Kurdistan Sanandaj Iran

4. Department of Civil Environmental and Natural Resources Engineering Lulea University of Technology Sweden

5. Department of Soil Conservation and Watershed Management Research Khuzestan Agricultural and Natural Resources Research and Education Center, AREEO Ahvaz Iran

6. Department of Earth Sciences Simon Fraser University Burnaby Canada

Abstract

AbstractFloods are both complex and destructive, and in most parts of the world cause injury, death, loss of agricultural land, and social disruption. Flood susceptibility (FS) maps are used by land‐use managers and land owners to identify areas that are at risk from flooding and to plan accordingly. This study uses machine learning ensembles to produce objective and reliable FS maps for the Haraz watershed in northern Iran. Specifically, we test the ability of the support vector regression (SVR), together with linear kernel (LK), base classifier (BC), and hyper‐parameter optimization (HPO), to identify flood‐prone areas in this watershed. We prepared a map of 201 past floods to predict future floods. Of the 201 flood events, 151 (75%) were used for modeling and 50 (25%) were used for validation. Based on the relevant literature and our field survey of the study area, 10 effective factors were selected and prepared for flood zoning. The results show that three of the 10 factors are most important for predicting flood‐sensitive areas, specifically and in order of importance, slope, distance to the river and river. Additionally, the SVR‐HPO model, with area under the curve values of 0.986 and 0.951 for the training and testing phases, outperformed the other two tested models.

Publisher

Wiley

Subject

Water Science and Technology,Safety, Risk, Reliability and Quality,Geography, Planning and Development,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3