Cumulative sedimentation hazard map of urban areas subject to hyperconcentrated flash flood: A case study of Suide County in the Wuding River basin, China

Author:

Lai Ruixun12ORCID,Li Junhua12,Wang Ping12,Guo Yan12,Xu Linjuan12,Zhang Xiangping12,Wang Min12,Zhang Xiaoli12

Affiliation:

1. Yellow River Institute of Hydraulic Research Yellow River Conservancy Commission Zhengzhou China

2. Key Laboratory of Lower Yellow River Channel and Estuary Regulation Ministry of Water Resources Zhengzhou China

Abstract

AbstractFlash floods can carry substantial sediment, posing significant sedimentation hazards in hilly cities. The sedimentation hazard map can reproduce the sediment thickness and extent of an extreme events scenario, playing an important role in sediment risk management. However, current research primarily focuses on modeling the inundation area and depth of floods, while studying sedimentation hazard caused by flash floods in urban areas remains insufficient. This paper aims to address this gap by utilizing a numerical model that simulates hyperconcentrated flow in hilly urban areas using the two‐dimensional hydro‐sediment‐morphological model to compile the cumulative sedimentation hazard map. The model, built upon the open‐source TELEMAC‐MASCARET framework, incorporates Zhang Hongwu's formula to simulate sediment‐carrying capacity, particularly suitable for hyper‐sediment concentration near the riverbed. This paper uses the data of extreme flash flood events in the Wuding River basin in 2017 to simulate and compile the cumulative sedimentation hazard map. The hazard map delineates the sedimentation hazard extent and level attributable to overbank floodplain sedimentation. Notably, the sediment thickness is highest in areas near the levees on both sides of the Dali River. Moreover, the map illustrates the extent of channel erosion resulting from hyperconcentrated floods, which could jeopardize bank stability.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Researching and managing flooding in the urban context;Journal of Flood Risk Management;2024-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3