Affiliation:
1. Department of Civil Engineering University of Sistan and Baluchestan Zahedan Iran
2. Department of Civil Engineering University of Birjand Birjand Iran
3. Department of Civil and Structural Engineering University of Sheffield Sheffield UK
4. Centre for Agroecology, Water and Resilience Coventry University Coventry UK
Abstract
AbstractFlooding in urban areas is expected to increase its magnitude and frequency in the future. Therefore, there is a strong need to better model sewer–surface flow interactions. Existing numerical methods are commonly based on simplified representations of sewer/surface mass exchange, and mainly validated in steady flow conditions. Current methodologies describing the propagation of transient conditions/waves through interaction nodes are simplified, rely on empirical coefficients and/or lack detailed validation. In this paper, an integrated numerical approach for modelling the propagation of water waves through interaction nodes (e.g., manholes) is presented. In this solution, the shallow water equations are used to simulate the free‐surface propagation inside the sewer network, and an ordinary differential equation is employed for modelling flow regimes through pipes and manholes. The model proposed is validated against the well‐known STAR‐CD modelling software for a number of test cases. Finally, further validation is performed against experimental data describing the evolution of water depth around a manhole in unsteady surcharging conditions.
Subject
Water Science and Technology,Safety, Risk, Reliability and Quality,Geography, Planning and Development,Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献