A comparative spatial analysis of flood susceptibility mapping using boosting machine learning algorithms in Rathnapura, Sri Lanka

Author:

Kurugama Kumudu Madhawa1ORCID,Kazama So1,Hiraga Yusuke1ORCID,Samarasuriya Chaminda2

Affiliation:

1. Department of Civil and Environmental Engineering Tohoku University Sendai Japan

2. Department of Earth Resources Engineering University of Moratuwa, Bandaranayake Mawatha Moratuwa Sri Lanka

Abstract

AbstractIdentifying flood‐prone areas is essential for preventing floods, reducing risks, and making informed decisions. A spatial database with 595 flood inventory and 13 flood predictors were used to implement five boosting algorithms: gradient boosting machine (GBM), extreme gradient boosting, categorical boosting, logit boost, and light gradient boosting machine (LGBM) to map flood susceptibility in Rathnapura while evaluating trained model's generalizing ability and assessing the feature importance in flood susceptibility mapping (FSM). The model performance was evaluated using the F1‐score, kappa index, and area under curve (AUC) method. The findings revealed that all the models were effective in identifying the overall flood susceptibility trends while LightGBM model had superior results (F1‐score = 0.907, Kappa value = 0.813 and AUC = 0.970), securing the top scores across all performance metrics compared to the other models (for testing dataset). Based on kappa evaluation, most of the models had finer performance (AUC min = 0.737) while LightGBM had moderate performance for predictions beyond the training region. According to the results, regions with lower altitudes and topographic roughness values, moderate rainfall, and proximity to rivers are more susceptible to flooding. This framework can be adapted for rapid FSM in data‐deficient regions.

Funder

Environmental Restoration and Conservation Agency

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3