Warming exacerbates the impacts of ultraviolet radiation in temperate diatoms but alleviates the effect on polar species

Author:

Cao Lixin1,Bi Dongquan1,Fan Wei1,Xu Juntian12,Beardall John34,Gao Kunshan3ORCID,Wu Yaping12ORCID

Affiliation:

1. Jiangsu Key Laboratory of Marine Bioresources and Environment/Co‐Innovation Center of Jiangsu Marine Bio‐Industry Technology Jiangsu Ocean University Lianyungang China

2. Key Laboratory of Coastal Salt Marsh Ecosystems and Resources Ministry of Natural Resources Jiangsu Ocean University Lianyungang China

3. State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences Xiamen University Xiamen China

4. School of Biological Sciences Monash University Clayton Victoria Australia

Abstract

AbstractUnder global change scenarios, the sea surface temperature is increasing steadily along with other changes to oceanic environments. Consequently, marine diatoms are influenced by multiple ocean global change drivers. We hypothesized that temperature rise mediates the responses of polar and temperate diatoms to UV radiation (UVR) to different extents, and exposed the temperate centric diatoms, Thalassiosira weissflogii and Skeletonema costatum, and a polar pennate diatom Entomoneis sp., to warming (+5°C) for 10 days, then performed short‐term incubations under different radiation treatments with or without UVR. The effective quantum yields of the three diatoms were stable during exposure to PAR, but decreased when exposed to PAR + UVR, leading to significant UV‐induced inhibition, which was 3% and 9%, respectively, for T. weissflogii and S. costatum under ambient temperature but increased to 12% and 17%, respectively, in the cells acclimated to the warming treatment. In contrast, UVR induced much higher inhibition, by about 45%, in the polar diatom Entomoneis sp. at ambient temperature, and the warming treatment alleviated the UV‐induced inhibition, which dropped to 36%. The growth rates were significantly inhibited by UVR in S. costatum under the warming treatment and in Entomoneis sp. under ambient temperature, while there was no significant effect for T. weissflogii. Our results indicate that the polar diatom was more sensitive to UVR though warming could alleviate its impact, whereas the temperate diatoms were less sensitive to UVR but warming exacerbated its impacts, implying that diatoms living in different regions may exhibit differential responses to global changes.

Funder

National Natural Science Foundation of China

Qinglan Project of Jiangsu Province of China

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3