Very high‐cycle fatigue life prediction of high‐strength steel based on machine learning

Author:

Liu Xiaolong1,Zhang Siyuan1,Cong Tao12,Zeng Fan34,Wang Xi1,Wang Wenjing1

Affiliation:

1. School of Mechanical Electronic and Control Engineering Beijing Jiaotong University Beijing China

2. Metals and Chemistry Research Institute China Academy of Railway Sciences Corporation Limited Beijing China

3. CAEP Software Center for High Performance Numerical Simulation Beijing China

4. Institute of Applied Physics and Computational Mathematics Beijing China

Abstract

AbstractVery high‐cycle fatigue life (VHCF) prediction of high‐strength steel based on machine learning (ML) was investigated in this paper. First, a total of 173 sets of experimental data on the VHCF of high‐strength steel were collected to train the ML model. The sensitivity coefficient analysis indicated that inclusion size and maximum stress were the strongest correlation parameters with fatigue life and selected as the input features for the final model training. The S–N curve predicted by the obtained ML model closely aligns with the actual S–N curve. Among the three algorithm models, namely, random forest, XG boost, and gradient boosting, the gradient boosting model exhibited superior performance and achieved the highest accuracy in predicting the VHCF life of high‐strength steel. A comparison between the Murakami model and the gradient boosting model was conducted. It is indicated that ML exhibits superior predictive performance with high efficiency and excellent accuracy.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3