Transient efflux inhibition improves plant regeneration by natural auxins

Author:

Karami Omid1ORCID,Khadem Azadeh1,Rahimi Arezoo1,Zagari Nicola2,Aigner Simon2,Offringa Remko1ORCID

Affiliation:

1. Plant Developmental Genetics, Institute of Biology Leiden Leiden University Sylviusweg 72 2333 BE Leiden Netherlands

2. ENZA Zaden, Haling 1‐E 1602 DB Enkhuizen The Netherlands

Abstract

SUMMARYPlant genome editing and propagation are important tools in crop breeding and production. Both rely heavily on the development of efficient in vitro plant regeneration systems. Two prominent regeneration systems that are widely employed in crop production are somatic embryogenesis (SE) and de novo shoot regeneration. In many of the protocols for SE or shoot regeneration, explants are treated with the synthetic auxin analog 2,4‐dichlorophenoxyacetic acid (2,4‐D), since natural auxins, such as indole‐3‐acetic acid (IAA) or 4‐chloroindole‐3‐acetic acid (4‐Cl‐IAA), are less effective or even fail to induce regeneration. Based on previous reports that 2,4‐D, compared to endogenous auxins, is not effectively exported from plant cells, we investigated whether efflux inhibition of endogenous auxins could convert these auxins into efficient inducers of SE in Arabidopsis immature zygotic embryos (IZEs). We show that natural auxins and synthetic analogs thereof become efficient inducers of SE when their efflux is transiently inhibited by co‐application of the auxin transport inhibitor naphthylphthalamic acid (NPA). Moreover, IZEs of auxin efflux mutants pin2 or abcb1 abcb19 show enhanced SE efficiency when treated with IAA or efflux‐inhibited IAA, confirming that auxin efflux reduces the efficiency of Arabidopsis SE. Importantly, in contrast to the 2,4‐D system, where only 50–60% of the embryos converted to seedlings, all SEs induced by transport‐inhibited natural auxins converted to seedlings. Efflux‐inhibited IAA, like 2,4‐D, also efficiently induced SE from carrot suspension cells, whereas IAA alone could not, and efflux‐inhibited 4‐Cl‐IAA significantly improved de novo shoot regeneration in Brassica napus. Our data provides new insights into the action of 2,4‐D as an efficient inducer of plant regeneration but also shows that replacing this synthetic auxin for efflux‐inhibited natural auxin significantly improves different types of plant regeneration, leading to a more synchronized and homogenous development of the regenerated plants.

Publisher

Wiley

Reference37 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3