Autochthonous production sustains food webs in large perialpine lakes, independent of trophic status: Evidence from amino acid stable isotopes

Author:

Saboret Grégoire12ORCID,Stalder Dominique34,Matthews Blake34ORCID,Brodersen Jakob34,Schubert Carsten Johnny12

Affiliation:

1. Centre of Ecology, Evolution and Biogeochemistry, Department of Surface Waters EAWAG, Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum Switzerland

2. Institute of Biogeochemistry and Pollutant Dynamics ETH Zürich, Universitätstrasse 16 Zürich Switzerland

3. Centre of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution EAWAG, Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum Switzerland

4. Institute of Ecology and Evolution, Aquatic Ecology, University of Bern Bern Switzerland

Abstract

Abstract Lakes are recipients of allochthonous organic matter and nutrients. However, the importance of these subsidies for food webs and how they vary with lake trophic status remains unclear, especially for large lakes. We assessed the source and fate of organic matter and nutrients in seven perialpine lakes across a gradient of trophic status. We measured carbon and nitrogen stable isotopes of amino acids of lake‐residing Atlantic trout, Salmo trutta, to determine the source of primary production (i.e., how carbon is fixed in the ecosystem) and how it is transferred through food webs, respectively. Based on essential amino acid carbon fingerprinting, we estimated the probability of organic carbon originating from autochthonous (algal), allochthonous (terrestrial plant), and recycled (bacterial) sources. In addition, we used amino acid δ15N to track how this primary production is transferred to consumers in general, and by using different trophic amino acids (glutamic acid and alanine), identify the trophic pathways involving either metazoan or protozoans. We found a high likelihood of autochthonous origin of organic carbon (86 ± 9%) in trout that contrasted with allochthonous origins of particulate organic matter and some sediments. We showed that those estimates are good proxies of source reliance. Our results also highlighted the importance of bacterial origin of organic carbon in fish (12%). The likely autochthonous origin of this carbon was supported by trophic markers (Ala δ15N) that suggest the role of protists in transferring recycled organic carbon up the food web. While the sources of nitrogen sustaining food webs varied among lakes, we found a conserved carbon fingerprinting of fish. Overall, this suggests an uncoupling between the source of nutrients and organic carbon in large perialpine lakes. Across a wide range of trophic status (c. 2 orders of magnitude range of phosphorus concentration), several lines of evidence suggested that perialpine lake food webs shared a common reliance on autochthonous and bacterial production. Our study is the first to quantify the dependence on allochthonous organic carbon in lake food webs based on new amino acid stable isotope markers (carbon fingerprinting and Ala δ15N) and shows promise for estimating the source of carbon fixation in ecosystems. Our results support previous suggestions that terrestrial organic carbon is a relatively minor source for aquatic consumers despite contributing to the pool of organic matter, and more importantly, its contribution does not vary substantially with trophic status in perialpine lakes.

Funder

Bundesamt für Umwelt

Eidgenössische Anstalt für Wasserversorgung Abwasserreinigung und Gewässerschutz

Publisher

Wiley

Subject

Aquatic Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3