Sedimentary environment and benthic oxygenation history of the Upper Cretaceous Austin Chalk Group, south Texas: An integrated ichnological, sedimentological and geochemical approach

Author:

Zheng Charlie Y. C.1ORCID,Kerans Charles12,Buatois Luis A.3,Mángano M. Gabriela3,Ko Lucy T.2

Affiliation:

1. Department of Geological Sciences, Jackson School of Geosciences The University of Texas at Austin 2305 Speedway Stop C1160 Austin TX 78712 USA

2. Bureau of Economic Geology, Jackson School of Geosciences The University of Texas at Austin 10100 Burnet Rd., Bldg 130 Austin TX 78758 USA

3. Department of Geological Sciences University of Saskatchewan 114 Science Place, Campus Drive Saskatoon SK S7N 5E2 Canada

Abstract

ABSTRACTOxygen concentration in the ocean is vital for sustaining marine ecosystems. While the potential impacts of deoxygenation on modern oceans are hard to predict, lessons can be learned from better characterizing past geological intervals formed under a greenhouse climate. The greenhouse Cretaceous containing several oceanic anoxic events characterized by widespread oxygen‐deficient water is ideal in this regard. The Austin Chalk Group in south Texas (USA) shows organic‐rich intervals that can be linked to oxygen depletion in the ocean, but the exact bottom water oxygenation conditions have not been estimated. This study aims to reconstruct both sediment interstitial and bottom water oxygenation history during Austin Chalk Group deposition by integrating detailed ichnological, sedimentological and geochemical (X‐ray fluorescence and X‐ray diffraction) analyses, thereby providing a consistent model that may be applicable across a range of marine shelf settings. The 141.12 m Gise #1 core contains a continuous record of the Austin Chalk Group, providing an opportunity for unravelling oxygenation and deoxygenation events. Whereas the anaerobic–exaerobic deposits are essentially nonbioturbated, four oxygen‐related ichnocoenoses are defined, further refining the transition of aerobic to dysaerobic conditions in the sediment interstitial water. Omission surfaces and glauconitic grains, products of current‐induced scouring and condensation, suggest sporadic high‐energy events in the Austin Chalk Group ramp that drove elevated terrestrial inputs. Geochemical data further help to identify anoxic bottom water conditions within the anaerobic facies. Additionally, the lowermost part of the Austin Chalk Group illustrates redox cycles, whereas dilution events characterized by elevated terrestrial input are identified throughout the rest of the Austin Chalk Group. The evolution of oxygenation levels in sediment interstitial water and bottom water disputes the existence of a long‐lasting oxygen‐deficient sea in south Texas. The refined depositional model may be applicable to coeval shelfal settings. Moreover, the results provide insights into variable, evolving palaeoclimatic and palaeoceanographic conditions of the greenhouse Late Cretaceous.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Stratigraphy,Geology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3