Physiological effects of temperature on Greenland halibut Reinhardtius hippoglossoides shows high vulnerability of Arctic stenotherms to global warming

Author:

Ruth Andreas1ORCID,Svendsen Morten Bo Søndergaard1,Nygaard Rasmus2,Christensen Emil Aputsiaq Flindt1,Bushnell Peter G.3,Steffensen John Fleng1

Affiliation:

1. Marine Biological Section, Department of Biology University of Copenhagen Helsingør Denmark

2. Department of Fish and Shellfish Greenland Institute of Natural Resources Nuuk Greenland

3. Department of Biological Sciences Indiana University South Bend South Bend Indiana USA

Abstract

AbstractGlobal warming affects the metabolism of ectothermic aquatic breathers forcing them to migrate and undergo high‐latitudinal distribution shifts to circumvent the temperature‐induced mismatch between increased metabolic demand and reduced water oxygen availability. Here the authors examined the effects of temperature on oxygen consumption rates in an Arctic stenotherm, the Greenland halibut Reinhardtius hippoglossoides, and calculated the optimal temperature for maximum aerobic scope, AS(Topt,AS), which was found to be 2.44°C. They also investigated cardiac performance as limiting the oxygen transport chain at high temperatures by measuring maximum heart rate (fHmax) over acute temperature increases and found various metrics related to fHmax to be at least 3.2°C higher than Topt,AS. The authors’ measured Topt,AS closely reflected in situ temperature occurrences of Greenland halibut from long‐term tagging studies, showing that AS of the species is adapted to its habitat temperature, and is thus a good proxy for the species' sensitivity to environmental warming. The authors did not find a close connection between fHmax and Topt,AS, suggesting that cardiac performance is not limiting for the oxygen transport chain at high temperatures in this particular Arctic stenotherm. The authors’ estimate of the thermal envelope for AS of Greenland halibut was from −1.89 to 8.07°C, which is exceptionally narrow compared to most other species of fish. As ocean temperatures increase most rapidly in the Arctic in response to climate change, and species in these areas have limited possibility for further poleward‐range shifts, these results suggest potential severe effects of global warming on Arctic stenotherms, such as the Greenland halibut. The considerable economic importance of the species raises concerns for future fisheries and species conservation of Arctic stenotherms in the Northern Hemisphere.

Funder

Danmarks Frie Forskningsfond

Publisher

Wiley

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3