Nitrogen addition affected the root competition in Cunninghamia lanceolataPhoebe chekiangensis mixed plantation

Author:

Yang Shuya1,Yi Lita1,Wang Jingru1,Li Xiaoyun1,Xu Bin2,Liu Meihua1ORCID

Affiliation:

1. State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China

2. School of Landscape Architecture, Zhejiang A&F University Hangzhou China

Abstract

AbstractLittle is known about below‐ground competition in mixed‐species plantations under increasing nitrogen (N) deposition. This study aims to determine the effects of N addition on root competition in coniferous and broad‐leaved species mixed plantations. A pot experiment was conducted using the coniferous species Cunninghamia lanceolata and the broad‐leaved species Phoebe chekiangensis planted in mixed plantations with different competition intensities under N addition (0 or 45 kg N ha−1 yr−1). Biomass allocation, root morphology, root growth level, and competitive ability were determined after five months of treatment. Our findings indicated that root interactions in mixed plantations did not influence biomass allocation in either C. lanceolata or P. chekiangensis but promoted growth in C. lanceolata when no N was added. However, N addition decreased biomass accumulation in both species in the mixed plantation and had a negative effect on the root growth of C. lanceolata due to intensified competition. Addition of N increased the relative importance of root predatory competition in P. chekiangensis, and increased the allelopathic competitive advantage in C. lanceolata. This suggests that N addition causes a shift in the root competitive strategy from tolerance to competition. Overall, these findings highlight the significant impact that the addition of N can have on plant interactions in mixed plantations. Our results provide implications for the mechanisms of root competition in response to increasing atmospheric N deposition in mixed plantations.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3