Leaf thermal safety margins decline at hotter temperatures in a natural warming ‘experiment’ in the Amazon

Author:

Kullberg Alyssa T.1ORCID,Coombs Lauren2,Soria Ahuanari Roy D.3,Fortier Riley P.1ORCID,Feeley Kenneth J.14ORCID

Affiliation:

1. Department of Biology University of Miami Coral Gables FL 33146 USA

2. Hussman Institute of Human Genomics University of Miami Miller School of Medicine Miami FL 33136 USA

3. Herbario Regional de Ucayali IVITA, Pucallpa (HRUIP) Universidad Nacional Mayor de San Marcos Pucallpa 25001 Peru

4. Fairchild Tropical Botanic Garden Coral Gables FL 33156 USA

Abstract

Summary The threat of rising global temperatures may be especially pronounced for low‐latitude, lowland plant species that have evolved under stable climatic conditions. However, little is known about how these species may acclimate to elevated temperatures. Here, we leveraged a strong, steep thermal gradient along a natural geothermal river to assess the ability of woody plants in the Amazon to acclimate to elevated air temperatures. We measured leaf traits in six common tropical woody species along the thermal gradient to investigate whether individuals of these species: acclimate their thermoregulatory traits to maintain stable leaf temperatures despite higher ambient temperatures; acclimate their photosynthetic thermal tolerances to withstand hotter leaf temperatures; and whether acclimation is sufficient to maintain stable leaf thermal safety margins (TSMs) across different growth temperatures. Individuals of three species acclimated their thermoregulatory traits, and three species increased their thermal tolerances with growth temperature. However, acclimation was generally insufficient to maintain constant TSMs. Notwithstanding, leaf health was generally consistent across growth temperatures. Acclimation in woody Amazonian plants is generally too weak to maintain TSMs at high growth temperatures, supporting previous findings that Amazonian plants will be increasingly vulnerable to thermal stress as temperatures rise.

Funder

American Philosophical Society

Tinker Foundation

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3