Multidecadal changes in coastal benthic species composition and ecosystem functioning occur independently of temperature‐driven community shifts

Author:

Armitage Phoebe12ORCID,Burrows Michael T.3ORCID,Rimmer James E. V.1ORCID,Blight Andrew J.1ORCID,Paterson David M.1ORCID

Affiliation:

1. Scottish Oceans Institute, School of Biology, University of St Andrews St Andrews UK

2. Åbo Akademi University, Environmental and Marine Biology Turku Finland

3. Scottish Association for Marine Science Oban UK

Abstract

AbstractRising global temperatures are often identified as the key driver impacting ecosystems and the services they provide by affecting biodiversity structure and function. A disproportionate amount of our understanding of biodiversity and function is from short‐term experimental studies and static values of biodiversity indices, lacking the ability to monitor long‐term trends and capture community dynamics. Here, we analyse a biennial dataset spanning 32 years of macroinvertebrate benthic communities and their functional response to increasing temperatures. We monitored changes in species' thermal affinities to examine warming‐related shifts by selecting their mid‐point global temperature distribution range and linking them to species' traits. We employed a novel weighted metric using Biological Trait Analysis (BTA) to gain better insights into the ecological potential of each species by incorporating species abundance and body size and selecting a subset of traits that represent five ecosystem functions: bioturbation activity, sediment stability, nutrient recycling and higher and lower trophic production. Using biodiversity indices (richness, Simpson's diversity and vulnerability) and functional indices (richness, Rao's Q and redundancy), the community structure showed no significant change over time with a narrow range of variation. However, we show shifts in species composition with warming and increases in the abundance of individuals, which altered ecosystem functioning positively and/or non‐linearly. Yet, when higher taxonomic groupings than species were excluded from the analysis, there was only a weak increase in the measured change in community‐weighted average thermal affinities, suggesting changes in ecosystem functions over time occur independently of temperature increase‐related shifts in community composition. Other environmental factors driving species composition and abundance may be more important in these subtidal macrobenthic communities. This challenges the prevailing emphasis on temperature as the primary driver of ecological response to climate change and emphasises the necessity for a comprehensive understanding of the temporal dynamics of complex systems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3