Canopy and understory nitrogen additions differently affect soil microbial residual carbon in a temperate forest

Author:

Chen Yuanqi12ORCID,Zhang Yu3ORCID,Zhang Xu3,Stevens Carly4ORCID,Fu Shenglei5,Feng Teng1,Li Xiaowei5ORCID,Chen Quan6,Liu Shirong2,Hu Shuijin7ORCID

Affiliation:

1. Institute of Geographical Environment and Carbon Peak and Neutrality, School of Earth Sciences and Spatial Information Engineering Hunan University of Science and Technology Xiangtan China

2. Key Laboratory of Forest Ecology and Environment of Forestry and Grassland Administration, Ecology and Nature Conservation Institute Chinese Academy of Forestry Beijing China

3. Institute of Carbon Peak and Neutrality, School of Life and Health Sciences Hunan University of Science and Technology Xiangtan China

4. Lancaster Environment Centre Lancaster University Lancaster UK

5. Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem Henan University Zhengzhou China

6. Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan Province Hainan University Haikou China

7. Department of Entomology and Plant Pathology North Carolina State University Raleigh North Carolina USA

Abstract

AbstractAtmospheric nitrogen (N) deposition in forests can affect soil microbial growth and turnover directly through increasing N availability and indirectly through altering plant‐derived carbon (C) availability for microbes. This impacts microbial residues (i.e., amino sugars), a major component of soil organic carbon (SOC). Previous studies in forests have so far focused on the impact of understory N addition on microbes and microbial residues, but the effect of N deposition through plant canopy, the major pathway of N deposition in nature, has not been explicitly explored. In this study, we investigated whether and how the quantities (25 and 50 kg N ha−1 year−1) and modes (canopy and understory) of N addition affect soil microbial residues in a temperate broadleaf forest under 10‐year N additions. Our results showed that N addition enhanced the concentrations of soil amino sugars and microbial residual C (MRC) but not their relative contributions to SOC, and this effect on amino sugars and MRC was closely related to the quantities and modes of N addition. In the topsoil, high‐N addition significantly increased the concentrations of amino sugars and MRC, regardless of the N addition mode. In the subsoil, only canopy N addition positively affected amino sugars and MRC, implying that the indirect pathway via plants plays a more important role. Neither canopy nor understory N addition significantly affected soil microbial biomass (as represented by phospholipid fatty acids), community composition and activity, suggesting that enhanced microbial residues under N deposition likely stem from increased microbial turnover. These findings indicate that understory N addition may underestimate the impact of N deposition on microbial residues and SOC, highlighting that the processes of canopy N uptake and plant‐derived C availability to microbes should be taken into consideration when predicting the impact of N deposition on the C sequestration in temperate forests.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3