Potassium transporter OsHAK9 regulates seed germination under salt stress by preventing gibberellin degradation through mediating OsGA2ox7 in rice

Author:

Zeng Peng12ORCID,Xie Ting1ORCID,Shen Jiaxin1ORCID,Liang Taokai2ORCID,Yin Lu1ORCID,Liu Kexin1ORCID,He Ying1,Chen Mingming1ORCID,Tang Haijuan1ORCID,Chen Sunlu1ORCID,Shabala Sergey23ORCID,Zhang Hongsheng1ORCID,Cheng Jinping1ORCID

Affiliation:

1. National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology Nanjing Agricultural University Nanjing 210095 China

2. International Research Center for Environmental Membrane Biology Foshan University Foshan 528000 China

3. School of Biological Sciences University of Western Australia Crawley WA 6009 Australia

Abstract

ABSTRACTSoil salinity has a major impact on rice seed germination, severely limiting rice production. Herein, a rice germination defective mutant under salt stress (gdss) was identified by using chemical mutagenesis. The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9. Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress. OsHAK9 is highly expressed in germinating seed embryos. Ion contents and non‐invasive micro‐test technology results showed that OsHAK9 restricted K+ efflux in salt‐exposed germinating seeds for the balance of K+/Na+. Disruption of OsHAK9 significantly reduced gibberellin 4 (GA4) levels, and the germination defective phenotype of oshak9a was partly rescued by exogenous GA3 treatment under salt stress. RNA sequencing (RNA‐seq) and real‐time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA‐deactivated gene OsGA2ox7 expression in germinating seeds under salt stress, and the expression of OsGA2ox7 was significantly inhibited by salt stress. Null mutants of OsGA2ox7 created using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress. Overall, our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7, which provides a novel clue about the relationship between GA and OsHAKs in rice.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3