Plastics select for distinct early colonizing microbial populations with reproducible traits across environmental gradients

Author:

Bos Ryan P.1ORCID,Kaul Drishti2,Zettler Erik R.3ORCID,Hoffman Jeffrey M.2,Dupont Christopher L.2,Amaral‐Zettler Linda A.345ORCID,Mincer Tracy J.16

Affiliation:

1. Harbor Branch Oceanographic Institute Florida Atlantic University Fort Pierce Florida USA

2. Environmental Sustainability J. Craig Venter Institute La Jolla California USA

3. Department of Marine Microbiology and Biogeochemistry NIOZ Royal Netherlands Institute for Sea Research Texel The Netherlands

4. Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands

5. Josephine Bay Paul Center for Comparative Molecular Biology and Evolution Marine Biological Laboratory Woods Hole Massachusetts USA

6. Department of Biology, Wilkes Honors College Florida Atlantic University Jupiter Florida USA

Abstract

AbstractLittle is known about early plastic biofilm assemblage dynamics and successional changes over time. By incubating virgin microplastics along oceanic transects and comparing adhered microbial communities with those of naturally occurring plastic litter at the same locations, we constructed gene catalogues to contrast the metabolic differences between early and mature biofilm communities. Early colonization incubations were reproducibly dominated by Alteromonadaceae and harboured significantly higher proportions of genes associated with adhesion, biofilm formation, chemotaxis, hydrocarbon degradation and motility. Comparative genomic analyses among the Alteromonadaceae metagenome assembled genomes (MAGs) highlighted the importance of the mannose‐sensitive hemagglutinin (MSHA) operon, recognized as a key factor for intestinal colonization, for early colonization of hydrophobic plastic surfaces. Synteny alignments of MSHA also demonstrated positive selection for mshA alleles across all MAGs, suggesting that mshA provides a competitive advantage for surface colonization and nutrient acquisition. Large‐scale genomic characteristics of early colonizers varied little, despite environmental variability. Mature plastic biofilms were composed of predominantly Rhodobacteraceae and displayed significantly higher proportions of carbohydrate hydrolysis enzymes and genes for photosynthesis and secondary metabolism. Our metagenomic analyses provide insight into early biofilm formation on plastics in the ocean and how early colonizers self‐assemble, compared to mature, phylogenetically and metabolically diverse biofilms.

Funder

National Science Foundation

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3