The effect of methane and methanol on the terrestrial ammonia‐oxidizing archaeon ‘Candidatus Nitrosocosmicus franklandus C13

Author:

Oudova‐Rivera Barbora1,Wright Chloe L.1,Crombie Andrew T.12ORCID,Murrell J. Colin2,Lehtovirta‐Morley Laura E.1ORCID

Affiliation:

1. School of Biological Sciences University of East Anglia Norwich UK

2. School of Environmental Sciences University of East Anglia Norwich UK

Abstract

AbstractThe ammonia monooxygenase (AMO) is a key enzyme in ammonia‐oxidizing archaea, which are abundant and ubiquitous in soil environments. The AMO belongs to the copper‐containing membrane monooxygenase (CuMMO) enzyme superfamily, which also contains particulate methane monooxygenase (pMMO). Enzymes in the CuMMO superfamily are promiscuous, which results in co‐oxidation of alternative substrates. The phylogenetic and structural similarity between the pMMO and the archaeal AMO is well‐established, but there is surprisingly little information on the influence of methane and methanol on the archaeal AMO and terrestrial nitrification. The aim of this study was to examine the effects of methane and methanol on the soil ammonia‐oxidizing archaeon ‘Candidatus Nitrosocosmicus franklandus C13’. We demonstrate that both methane and methanol are competitive inhibitors of the archaeal AMO. The inhibition constants (Ki) for methane and methanol were 2.2 and 20 μM, respectively, concentrations which are environmentally relevant and orders of magnitude lower than those previously reported for ammonia‐oxidizing bacteria. Furthermore, we demonstrate that a specific suite of proteins is upregulated and downregulated in ‘Ca. Nitrosocosmicus franklandus C13’ in the presence of methane or methanol, which provides a foundation for future studies into metabolism of one‐carbon (C1) compounds in ammonia‐oxidizing archaea.

Funder

Earth and Life Systems Alliance

H2020 European Research Council

Leverhulme Trust

Royal Society

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3