Microbial diversity and abundance vary along salinity, oxygen, and particle size gradients in the Chesapeake Bay

Author:

Cram Jacob A.1ORCID,Hollins Ashley1,McCarty Alexandra J.12,Martinez Grace3,Cui Minming4,Gomes Maya L.4,Fuchsman Clara A.1ORCID

Affiliation:

1. Horn Point Laboratory University of Maryland Center for Environmental Science Cambridge Maryland USA

2. Marine Advisory Program Virginia Institute of Marine Science Gloucester Virginia USA

3. Maryland Sea Grant College College Park Maryland USA

4. Earth and Planetary Sciences Johns Hopkins University Baltimore Maryland USA

Abstract

AbstractMarine snow and other particles are abundant in estuaries, where they drive biogeochemical transformations and elemental transport. Particles range in size, thereby providing a corresponding gradient of habitats for marine microorganisms. We used standard normalized amplicon sequencing, verified with microscopy, to characterize taxon‐specific microbial abundances, (cells per litre of water and per milligrams of particles), across six particle size classes, ranging from 0.2 to 500 μm, along the main stem of the Chesapeake Bay estuary. Microbial communities varied in salinity, oxygen concentrations, and particle size. Many taxonomic groups were most densely packed on large particles (in cells/mg particles), yet were primarily associated with the smallest particle size class, because small particles made up a substantially larger portion of total particle mass. However, organisms potentially involved in methanotrophy, nitrite oxidation, and sulphate reduction were found primarily on intermediately sized (5–180 μm) particles, where species richness was also highest. All abundant ostensibly free‐living organisms, including SAR11 and Synecococcus, appeared on particles, albeit at lower abundance than in the free‐living fraction, suggesting that aggregation processes may incorporate them into particles. Our approach opens the door to a more quantitative understanding of the microscale and macroscale biogeography of marine microorganisms.

Funder

Maryland Sea Grant, University of Maryland

National Science Foundation

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3