Affiliation:
1. Ecology Group Rheinland‐Pfälzische Technische Universität Kaiserslautern‐Landau Kaiserslautern Germany
2. Natural History Museum University of Oslo Oslo Norway
Abstract
AbstractCiliates play a key role in most ecosystems. Their abundance in natural samples is crucial for answering many ecological questions. Traditional methods of quantifying individual species, which rely on microscopy, are often labour‐intensive, time‐consuming and can be highly biassed. As a result, we investigated the potential of digital polymerase chain reaction (dPCR) for quantifying ciliates. A significant challenge in this process is the high variation in the copy number of the taxonomic marker gene (ribosomal RNA [rRNA]). We first quantified the rRNA gene copy numbers (GCN) of the model ciliate, Paramecium tetraurelia, during different stages of the cell cycle and growth phases. The per‐cell rRNA GCN varied between approximately 11,000 and 130,000, averaging around 50,000 copies per cell. Despite these variations in per‐cell rRNA GCN, we found a highly significant correlation between GCN and cell numbers. This is likely due to the coexistence of different cellular stages in an uncontrolled (environmental) ciliate population. Thanks to the high sensitivity of dPCR, we were able to detect the target gene in a sample that contained only a single cell. The dPCR approach presented here is a valuable addition to the molecular toolbox in protistan ecology. It may guide future studies in quantifying and monitoring the abundance of targeted (even rare) ciliates in natural samples.
Funder
Deutsche Forschungsgemeinschaft
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献