Cell surface composition, released polysaccharides, and ionic strength mediate fast sedimentation in the cyanobacterium Synechococcus elongatusPCC 7942

Author:

Zedler Julie A. Z.1ORCID,Michel Marlene2,Pohnert Georg2ORCID,Russo David A.2ORCID

Affiliation:

1. Friedrich Schiller University Jena Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Synthetic Biology of Photosynthetic Organisms Jena Germany

2. Friedrich Schiller University Jena Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics Jena Germany

Abstract

AbstractCyanobacteria are photosynthetic prokaryotes of high ecological and biotechnological relevance that have been cultivated in laboratories around the world for more than 70 years. Prolonged laboratory culturing has led to multiple microevolutionary events and the appearance of a large number of ‘domesticated’ substrains among model cyanobacteria. Despite its widespread occurrence, strain domestication is still largely ignored. In this work we describe Synechococcus elongatus PCC 7942‐KU, a novel domesticated substrain of the model cyanobacterium S. elongatus PCC 7942, which presents a fast‐sedimenting phenotype. Under higher ionic strengths the sedimentation rate increased leading to complete sedimentation in just 12 h. Through whole genome sequencing and gene deletion, we demonstrated that the Group 3 alternative sigma factor F plays a key role in cell sedimentation. Further analysis showed that significant changes in cell surface structures and a three‐fold increase in released polysaccharides lead to the appearance of a fast‐sedimenting phenotype. This work sheds light on the determinants of the planktonic to benthic transitions and provides genetic targets to generate fast‐sedimenting strains that could unlock cost‐effective cyanobacterial harvesting at scale.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3