Affiliation:
1. Horn Point Laboratory University of Maryland Center for Environmental Science Cambridge Maryland USA
Abstract
AbstractPicocyanobacteria contribute greatly to offshore primary production with cells extending through the deep euphotic zone. Literature indicates high viral infection of cyanobacteria in ocean transition zones. We postulate that the bottom of the euphotic zone is a transition zone, where communities transition from phototrophic to aphotic processes. We use single‐copy core genes to examine cyanophage to cyanobacteria ratios in cellular metagenomes in the subtropical North Atlantic and Pacific. Cyanophage to cyanobacteria terL/rpoB ratios generally increase to >10 in the deep euphotic zone. As light levels decrease in the fall, Prochlorococcus in the deep euphotic zone experience reduced light levels. We find clear differences between spring (Geotraces GA02) and fall (GA03) in the North Atlantic, with terL/rpoB ratios increasing to >40 in the fall. When examining 23 months of the North Pacific Hawaii Ocean Timeseries, the depth of elevated cyanophage to cyanobacteria ratios in cellular metagenomes negatively correlated with surface photosynthetic radiation (PAR), particularly with the change in PAR, which reflected the season. In fall, all picocyanobacteria ecotypes were found at depths enriched with viruses, while in summer, only low light ecotypes were affected. Thus, we find high cyanophage infection both in the deep euphotic zone and during seasonal transitions.
Subject
Ecology, Evolution, Behavior and Systematics,Microbiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献