Affiliation:
1. Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
2. Beadle Center for Genetics University of Nebraska‐Lincoln Lincoln Nebraska USA
Abstract
AbstractThermoacidophilic archaea lack sigma factors and the large inventory of heat shock proteins (HSPs) widespread in bacterial genomes, suggesting other strategies for handling thermal stress are involved. Heat shock transcriptomes for the thermoacidophilic archaeon Saccharolobus (f. Sulfolobus) solfataricus 98/2 revealed genes that were highly responsive to thermal stress, including transcriptional regulators YtrASs (Ssol_2420) and FadRSs (Ssol_0314), as well as type II toxin–antitoxin (TA) loci VapBC6 (Ssol_2337, Ssol_2338) and VapBC22 (Ssol_0819, Ssol_0818). The role, if any, of type II TA loci during stress response in microorganisms, such as Escherichia coli, is controversial. But, when genes encoding YtrASs, FadRSs, VapC22, VapB6, and VapC6 were systematically mutated in Sa. solfataricus 98/2, significant up‐regulation of the other genes within this set was observed, implicating an interconnected regulatory network during thermal stress response. VapBC6 and VapBC22 have close homologues in other Sulfolobales, as well as in other archaea (e.g. Pyrococcus furiosus and Archaeoglobus fulgidus), and their corresponding genes were also heat shock responsive. The interplay between VapBC TA loci and heat shock regulators in Sa solfataricus 98/2 not only indicates a cellular mechanism for heat shock response that differs from bacteria but one that could have common features within the thermophilic archaea.
Funder
National Institutes of Health
Subject
Ecology, Evolution, Behavior and Systematics,Microbiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献