Gills, growth and activity across fishes

Author:

Bigman Jennifer S.1ORCID,Wegner Nicholas C.2ORCID,Dulvy Nicholas K.1ORCID

Affiliation:

1. Earth to Ocean Research Group Simon Fraser University Burnaby British Columbia Canada

2. Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service National Oceanic and Atmospheric Administration La Jolla California USA

Abstract

AbstractLife history theory suggests that maximum size and growth evolve to maximize fitness. In contrast, the Gill Oxygen Limitation Theory (GOLT) suggests that growth and maximum size in fishes and other aquatic, water‐breathing organisms is constrained by the body mass‐scaling of gill surface area. Here, we use new data and a novel phylogenetic Bayesian multilevel modelling framework to test this idea by asking the three questions posed by the GOLT regarding maximum size, growth and gills. Across fishes, we ask whether the body mass‐scaling of gill surface area explains (1) variation in the von Bertalanffy growth coefficient (k) above and beyond that explained by asymptomatic size (W), (2) variation in growth performance (a trait that integrates the tradeoff between k and W) and (3) more variation in growth performance compared to activity (as approximated by caudal fin aspect ratio). Overall, we find that there is only a weak relationship among maximum size, growth and gill surface area across species. Indeed, the body mass‐scaling of gill surface area does not explain much variation in k (especially for those species that reach the same W) or growth performance. Activity explained three to five times more variation in growth performance compared to gill surface area. Our results suggest that in fishes, gill surface area is not the only factor that explains variation in maximum size and growth, and that other covariates (e.g. activity) are likely important in understanding how growth, maximum size and other life history traits vary across species.

Funder

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3