Effect of reinforcement particle size on the corrosion and mechanical properties of spark plasma sintered aluminium matrix composites

Author:

Sadeghi Behzad1ORCID,Cavaliere Pasquale1ORCID,Sanayei Mohsen2ORCID

Affiliation:

1. Department of Innovation Engineering University of Salento Lecce Italy

2. Metallurgist and Materials Engineering Technical Lead, Department of Innovation and Sustainability – Product Development, Husky Technologies Bolton Ontario Canada

Abstract

AbstractIn this study, the effects of different sizes of reinforcing particles on the corrosion behaviour and mechanical properties of aluminium (Al)‐based composites produced by spark plasma sintering (SPS) are analysed. In the study, the effects of SPS parameters, including electrical power, applied pressure and sintering temperature, on the consolidation process and microstructure evolution of the composite are closely investigated. The results reveal a nuanced relationship between the sintering conditions and the properties of the particles, which in turn determine the sintering dynamics and the formation of the microstructural features. The evaluation of mechanical properties indicates a remarkable influence of particle size distribution on the hardness of the composites, showing an initial improvement with the introduction of nanoparticles, followed by a slight decrease as the balance between nano‐ and micron‐sized Al2O3 particles shifts. A scanning electron microscopy (SEM) study demonstrates the influence of particle dimensions on the change of grain boundaries and the spatial arrangement of the composite matrix. Electrochemical experiments in a 0.1 M NaCl solution show a consistent corrosion potential (Ecorr) across all samples, while the current densities associated with corrosion (icorr) show considerable variation. The presence of nano‐sized Al2O3 particles was found to increase corrosion resistance, in contrast to the detrimental effects observed with larger microparticles. In particular, composites with a bimodal distribution of particle sizes showed a 3.5‐fold increase in corrosion resistance compared to pure Al. The specific Al‐2n8mAl2O3 composite that exhibited active electrochemical properties at elevated potentials without a defined passivation range emphasises the significant role of particle size. This study draws attention to bimodal microstructures as a promising route to achieving uniformity and improved corrosion resistance in Al matrix composites, while pointing to the need for further research to fully elucidate the operative mechanisms.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3