Prognostic value of clinical and radiomic parameters in patients with liver metastases from uveal melanoma

Author:

Lever Mael1,Bogner Simon2,Giousmas Melina2,Mairinger Fabian D.3,Baba Hideo A.3,Richly Heike2,Gromke Tanja2,Schuler Martin24,Bechrakis Nikolaos E.14,Kalkavan Halime24ORCID

Affiliation:

1. Department of Ophthalmology, West German Cancer Center, University Hospital Essen University Duisburg‐Essen Essen Germany

2. Department of Medical Oncology, West German Cancer Center, University Hospital Essen University Duisburg‐Essen Essen Germany

3. Institute of Pathology, West German Cancer Center, University Hospital Essen University Duisburg‐Essen Essen Germany

4. National Center for Tumor Diseases (NCT) West Essen Germany

Abstract

AbstractApproximately every second patient with uveal melanoma develops distant metastases, with the liver as the predominant target organ. While the median survival after diagnosis of distant metastases is limited to a year, yet‐to‐be‐defined subgroups of patients experience a more favorable outcome. Therefore, prognostic biomarkers could help identify distinct risk groups to guide patient counseling, therapeutic decision‐making, and stratification of study populations. To this end, we retrospectively analyzed a cohort of 101 patients with newly diagnosed hepatic metastases from uveal melanoma by using Cox‐Lasso regression machine learning, adapted to a high‐dimensional input parameter space. We show that substantial binary risk stratification can be performed, based on (i) clinical and laboratory parameters, (ii) measures of quantitative overall hepatic tumor burden, and (iii) radiomic parameters. Yet, combining two or all three domains failed to improve prognostic separation of patients. Additionally, we identified highly relevant clinical parameters (including lactate dehydrogenase, thrombocyte counts, aspartate transaminase, and the metastasis‐free interval) at first diagnosis of metastatic disease as predictors for time‐to‐treatment failure and overall survival. Taken together, the risk stratification models, built by our machine‐learning algorithm, identified a comparable and independent prognostic value of clinical, radiological, and radiomic parameters in uveal melanoma patients with hepatic metastases.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3