Potential use of yeast protein in terms of biorefinery, functionality, and sustainability in food industry

Author:

Timira Vaileth12,Chen Xing12ORCID,Zhou Peng12ORCID,Wu Junjun3,Wang Tao12

Affiliation:

1. State Key Laboratory of Food Science and Resources Jiangnan University Wuxi China

2. School of Food Science and Technology Jiangnan University Wuxi China

3. School of Biotechnology Jiangnan University Wuxi China

Abstract

AbstractA growing demand for sustainable, alternative protein sources that are nutrient‐dense, such as microorganisms, and insects, has gradually evolved. When paired with effective processing techniques, yeast cells contain substantial substances that could supply the population's needs for food, medicine, and fuel. This review article explores the potential of yeast proteins as a sustainable and viable alternative to animal and plant‐based protein sources. It highlights the various yeast protein extraction methods including both mechanical and non‐mechanical methods. The application of nanoparticles is one example of the fast‐evolving technology used to damage microbial cells. SiO2 or Al2O3 nanoparticles break yeast cell walls and disrupt membranes, releasing intracellular bioactive compounds. Succinylation of yeast protein during extraction can increase yeast protein extraction rate, lower RNA concentration, raise yeast protein solubility, increase amino acid content, and improve yeast protein emulsification and foaming capabilities. Combining physical and enzymatic extraction methods generates the most representative pool of mannose proteins from yeast cell walls. Ethanol or isoelectric precipitation purifies mannose proteins. Mannoproteins can be used as foamy replacement for animal‐derived components like egg whites due to their emulsification, stability, and foaming capabilities. Yeast bioactive peptide was separated by ultrafiltration after enzymatic hydrolysis of yeast protein and has shown hypoglycemic, hypotensive, and oxidative action in vitro studies. Additionally, the review delves into the physicochemical properties and stability of yeast‐derived peptides as well as their applications in the food industry. The article infers that yeast proteins are among the promising sources of sustainable protein, with a wide range of potential applications in the food industry.

Funder

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3